
Securing PostgreSQL – Exploring
PostgreSQL Features, Extensions, and

Guides

Joe Conway
joe.conway@crunchydata.com

mail@joeconway.com

Crunchy Data

2018-06-01

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Securing PostgreSQL

PostgreSQL and Ecosystem: Security Features

CIS Benchmark and Security Technical Implementation Guide (STIG)

Related postgresql.conf settings and pg hba.conf rules

Appendix: set user, pgaudit, RLS Timetravel

http://www.postgresql.org https://postgresql.us/

Joe Conway PGCon 2018 2/69

http://www.postgresql.org
https://postgresql.us/

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Security

International Recognition

Common Criteria, ISO/IEC 15408 (CC)
Security Technical Implementation Guide (STIG)
Center for Internet Security (CIS) Benchmark
(Currently DRAFT - open for comments)

Features

Perimeter
Internal
Chronological

Joe Conway PGCon 2018 3/69

https://www.commoncriteriaportal.org/files/epfiles/Security%20Target%20-%20Crunchy%20-%20Version%201.6%20-%2020160509.pdf
https://iasecontent.disa.mil/stigs/zip/U_PostgreSQL_9-x_V1R3_STIG.zip
https://www.cisecurity.org/

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Operating Systemp

OS Configuration

FIPS 140-2 compliance
STIG or CIS Benchmark

Discretionary Access Control (DAC)

Not privileged account
Runtime perm checks

Mandatory Access Control (MAC)

SELinux: Confined (RHEL - MCS Policy)

Encryption at rest

Filesystem encryption, many options

Joe Conway PGCon 2018 4/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Client-serverp

Authentication

Host based authentication
Internal: md5*, SCRAM-SHA-256, cert (SSL)
OS: PAM, peer, ident
External: GSSAPI, SSPI, LDAP, RADIUS

Encryption in transit

SSL

Joe Conway PGCon 2018 5/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

DACp

ROLE

vs. USER and GROUP
Hierarchical

GRANT and REVOKE

Follows SQL Standard reasonably closely
Covers virtually all DB Objects

Encryption

pg crypto: PGP, OpenSSL; hashing and encryption
Application encryption always possible

Joe Conway PGCon 2018 6/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

MACp

sepgsql: SELinux bindings

RBAC Type Enforcement covers most DB Objects
Can combine with custom SELinux policy for
powerful control

Joe Conway PGCon 2018 7/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Row Level Securityp

Tables can have row security policies

Restrict, on a per-user basis

Which rows visible to normal queries
What can be inserted, updated, or deleted

Joe Conway PGCon 2018 8/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

set user extensionp

set user extension

Allows switching users and privilege escalation with
enhanced logging and control
Enhanced logging ensures an audit trail
More detail in Appendix

Joe Conway PGCon 2018 9/69

https://github.com/pgaudit/set_user

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

set user - Why?

PostgreSQL superuser capabilities

Bypass all DAC
Bypass RLS
Load any library
COPY ... PROGRAM (execute arbitrary shell command)
ALTER SYSTEM (change conf setting with SQL)
Create/execute any function
. . . others . . .

Multiplex unprivileged users with pooled connection

Joe Conway PGCon 2018 10/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Bypass All DAC

SET SESSION AUTHORIZATION bob;

CREATE TABLE foo(id int);

INSERT INTO foo VALUES(42);

REVOKE ALL ON foo FROM public, postgres;

RESET SESSION AUTHORIZATION;

SELECT CURRENT_USER, * FROM foo;

current_user | id

--------------+----

postgres | 42

Joe Conway PGCon 2018 11/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Bypass RLS

SET SESSION AUTHORIZATION bob;

ALTER TABLE foo ENABLE ROW LEVEL SECURITY;

ALTER TABLE foo FORCE ROW LEVEL SECURITY;

CREATE POLICY p1 ON foo USING (id != 42);

SELECT CURRENT_USER, * FROM foo;

current_user | id

--------------+----

(0 rows)

RESET SESSION AUTHORIZATION;

SELECT CURRENT_USER, * FROM foo;

current_user | id

--------------+----

postgres | 42

Joe Conway PGCon 2018 12/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Load Any library

CREATE FUNCTION timed_sys_exec (text)

RETURNS text

AS '$libdir/pgiftest','timed_sys_exec'

LANGUAGE C STRICT;

SELECT timed_sys_exec('echo "hello world" > tse.txt');

timed_sys_exec

duration=0.029718:stdout=

SELECT timed_sys_exec('cat tse.txt');

timed_sys_exec

duration=0.001130:stdout=hello world

Joe Conway PGCon 2018 13/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - COPY PROGRAM

COPY foo TO PROGRAM 'echo "local all all trust" > /tmp/pg_hba.conf';

\q

cat /tmp/pg_hba.conf

local all all trust

Joe Conway PGCon 2018 14/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - ALTER SYSTEM

ALTER SYSTEM SET hba_file = '/tmp/pg_hba.conf';

-- wait for or initiate restart

SHOW hba_file;

hba_file

/tmp/pg_hba.conf

Joe Conway PGCon 2018 15/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Create/Execute Any Function

-- PostgreSQL 9.6 and earlier only

CREATE FUNCTION pgsystem(cstring) RETURNS integer

LANGUAGE c IMMUTABLE STRICT LEAKPROOF

AS '$libdir/plpgsql', 'system';

select pgsystem('echo "hello world" > suabuse.txt'::cstring);

system

0

\q

cd $PGDATA

cat suabuse.txt

hello world

Joe Conway PGCon 2018 16/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Create/execute Any Function

-- PostgreSQL 9.6 and earlier only

CREATE FUNCTION malloc(integer) RETURNS bigint

LANGUAGE c IMMUTABLE STRICT LEAKPROOF

AS '$libdir/plpgsql', 'malloc';

CREATE FUNCTION strdup(bigint) RETURNS cstring

LANGUAGE c IMMUTABLE STRICT LEAKPROOF

AS '$libdir/plpgsql', 'strdup';

CREATE FUNCTION open(cstring, integer) RETURNS integer

LANGUAGE c IMMUTABLE STRICT LEAKPROOF

AS '$libdir/plpgsql', 'open';

CREATE FUNCTION read(integer, bigint, integer) RETURNS integer

LANGUAGE c IMMUTABLE STRICT LEAKPROOF

AS '$libdir/plpgsql', 'read';

Joe Conway PGCon 2018 17/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Superuser Abuse - Create/execute Any Function

-- PostgreSQL 9.6 and earlier only

WITH

buf(d) AS (select malloc(3312)),

rd(l) AS (select read(open('/etc/passwd'::cstring, 0),

buf.d,

3311) from buf)

SELECT rd.l AS size, left(strdup(buf.d)::text,188) AS first_few_lines

FROM rd, buf;

size | first_few_lines

------+---

3311 | root:x:0:0:root:/root:/bin/bash +

| daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin+

| bin:x:2:2:bin:/bin:/usr/sbin/nologin +

| sys:x:3:3:sys:/dev:/usr/sbin/nologin +

| sync:x:4:65534:sync:/bin:/bin/sync

(1 row)

Joe Conway PGCon 2018 18/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

Logging

Error logging and reporting

stderr, csvlog, eventlog (Windows only), and syslog
Many options: where, when, what
Remote via syslog, ship with logstash/beats

pgaudit extension

More granular, resists obfuscation
Session (coarse grained) or object (fine grained)
More detail in Appendix

sepgsql extension

Generally denials are logged to audit.log
Tunable with custom policy

Joe Conway PGCon 2018 19/69

Security Overview
CIS and STIG

Appendix

Perimeter
Internal
Chronological

History

Trigger based history

Event triggers - DDL
DML triggers - JSON, hstore, timestamp range
datatype
Audit trigger example

RLS Policy

Use timestamp range datatype
Policy makes only current version visible by default
Old versions saved via trigger
Partitioning keeps current and old row separated
Example in Appendix

Joe Conway PGCon 2018 20/69

https://wiki.postgresql.org/wiki/Audit_trigger_91plus

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Terms

CIS: Center for Internet Security

Non-profit entity that produces recognized best
practices for securing IT systems and data

CIS Benchmark

Configuration guidelines

DISA: Defense Information Systems Agency

Agency assures globally accessible enterprise
information infrastructure

STIG: Security Technical Implementation Guide

Configuration standards for DOD systems
Contain technical guidance to ”lock down”
systems/software

Joe Conway PGCon 2018 21/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

PostgreSQL CIS Benchmark

PostgreSQL 9.X on RHEL CIS Benchmark -
DRAFT

Prescriptive guidance for establishing a secure
configuration posture for open source PostgreSQL
Tested on CentOS 6
PostgreSQL 9.5+
All Open Source Components
Two profiles

Level 1: practical and prudent with clear security
benefit but not inhibit utility of the technology
Level 2: extends level 1 with defense in depth,
but may inhibit utility or performance

Joe Conway PGCon 2018 22/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

CIS Benchmark - Coverage Summary

Contains the following sections:

Installation and Patches
Directory and File Permissions
Logging Monitoring And Auditing (Centos 6)
User Access and Authorization
Connection and Login
PostgreSQL Settings
Replication
Special Configuration Considerations

Joe Conway PGCon 2018 23/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

CIS Benchmark - Anatomy of a Rule

Scoring Status

Applicable Profiles

Description

Audit Procedure

Remediation Procedure

CIS Controls

References

Notes

Joe Conway PGCon 2018 24/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

PostgreSQL STIG

PostgreSQL 9.X on RHEL Security Technical
Implementation Guide (STIG)

Comprehensive guide for config and ops of open
source PostgreSQL
Based on the Database SRG (Security
Requirements Guide)
Derives controls from NIST SP 800-53
RHEL 7.X with FIPS 140-2 crypto enabled
PostgreSQL 9.5+
111 Rules
All Open Source Components

Joe Conway PGCon 2018 25/69

http://iase.disa.mil/stigs/app-security/database

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Coverage Summary

Provides guidance to address requirements
associated with:

Auditing
Logging
Data Encryption at Rest
Data Encryption Over the Wire
Access Controls
Administration
Authentication
Protecting against SQL Injection

Joe Conway PGCon 2018 26/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Appendixes

Instructions and code samples, assists with
implementation of Fixes

Verify applicability and tailor it as necessary

Covered:

Sample account lockout script
pgaudit installation and configuration
General logging and remote logging configuration
RLS use example SQL script
pgcrypto installation
Finding and checking PGDATA
SSL configuration guide (detailed)

Joe Conway PGCon 2018 27/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Anatomy of a Rule

General Info: title, identifiers, severity category

Discussion: describes security issue under
consideration

Check: how to check compliance with the rule

Fix: how to remediate for compliance with the rule

References: related CCI and NIST standards

Joe Conway PGCon 2018 28/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Viewerp

STIG Viewer:
https://iase.disa.mil/stigs/Pages/stig-viewing-guidance.aspx

java -jar STIGViewer-2.5.4.jar

Joe Conway PGCon 2018 29/69

https://iase.disa.mil/stigs/Pages/stig-viewing-guidance.aspx

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Checkerp

STIG Checker
https://github.com/CrunchyData/pgstigcheck-inspec

Open source

Work in progress

Uses chef/inspec

Others planned, e.g. CIS Benchmark, NIST

Also WIP – continuous compliance checker

Joe Conway PGCon 2018 30/69

https://github.com/CrunchyData/pgstigcheck-inspec
https://github.com/chef/inspec

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - General Information

Ensure excessive administrative privileges are revoked

Scoring Status
Not Scored

Applicable Profiles
Level 1 - PostgreSQL on Linux

Joe Conway PGCon 2018 31/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Description

With respect to PostgreSQL administrative SQL commands, only
superusers should have elevated privileges. PostgreSQL regular or
application users should not possess the ability to create roles, create
new databases, manage replication, or perform any other action deemed
privileged for a superuser account. Typically, regular users should only
be granted the minimal set of privileges commensurate with managing
the application:

DDL (create table, create view, create index, etc.)

DML (select, insert, update, delete)

Rationale Statement

By not restricting global administrative commands to superusers only,
regular users granted excessive privileges may execute administrative
commands with unintended and undesirable results.

Joe Conway PGCon 2018 32/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Audit Procedure

First, inspect the privileges granted to the database superuser (identified
here as postgres) using the display command psql -c "\du postgres"

to establish a baseline for granted administrative privileges. Based on
the output below, the postgres superuser can create roles, create
databases, manage replication, and bypass row level security:

$ psql -c "\du postgres"

List of roles

Role name | Attributes

----------+---

postgres | Superuser, Create role, Create DB, Replication,

| Bypass RLS

Joe Conway PGCon 2018 33/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Audit Procedure

Now, let’s inspect the same information for a mock regular user called
appuser using the display command psql -c "\du appuser". The
output confirms that regular user appuser has the same elevated
privileges as system administrator user postgres. This is a finding.

$ psql -c "\du appuser"

List of roles

Role name | Attributes

----------+---

appuser | Superuser, Create role, Create DB, Replication,

| Bypass RLS

While this example demonstrated excessive administrative privileges
granted to a single user, a comprehensive audit should be conducted to
inspect all database users for excessive administrative privileges. This
can be accomplished via either of the commands below.

$ psql -c "\du *"

$ psql -c "select * from pg_user order by usename"

Joe Conway PGCon 2018 34/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Remediation Procedure

If any regular or application users have been granted excessive
administrative rights, those privileges should be removed immediately
via the PostgreSQL ALTER ROLE SQL command. Using the same
example above, the following SQL statements revoke all unnecessary
elevated administrative privileges from the regular user appuser:

$ psql -c "ALTER ROLE appuser NOSUPERUSER;"

ALTER ROLE

$ psql -c "ALTER ROLE appuser NOCREATEROLE;"

ALTER ROLE

$ psql -c "ALTER ROLE appuser NOCREATEDB;"

ALTER ROLE

$ psql -c "ALTER ROLE appuser NOREPLICATION;"

ALTER ROLE

$ psql -c "ALTER ROLE appuser NOBYPASSRLS;"

ALTER ROLE

$ psql -c "ALTER ROLE appuser NOINHERIT;"

ALTER ROLE

Joe Conway PGCon 2018 35/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Remediation Procedure

Verify the appuser now passes your check by having no defined
Attributes:

$ psql -c "\du appuser"

List of roles

Role name | Attributes | Member of

----------+------------+-----------

appuser | |

Joe Conway PGCon 2018 36/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example CIS Benchmark Rule - Controls and Refs

CIS Controls

Version 6
5.1: Minimize And Sparingly Use Administrative Privileges
Version 7

References

https://www.postgresql.org/docs/current/static/sql-revoke.html
https://www.postgresql.org/docs/current/static/sql-createrole.html
https://www.postgresql.org/docs/current/static/sql-alterrole.html

Joe Conway PGCon 2018 37/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - General Information

Rule Title: PostgreSQL must be configured to prohibit or restrict the
use of organization-defined functions, ports, protocols, and/or services,
as defined in the PPSM CAL and vulnerability assessments.
STIG ID: PGS9-00-000100
Rule ID: SV-87493r1 rule
Vuln ID: V-72841
Severity: CAT II
Class: Unclass

Joe Conway PGCon 2018 38/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - Discussion

In order to prevent unauthorized connection of devices, unauthorized
transfer of information, or unauthorized tunneling (i.e., embedding of
data types within data types), organizations must disable or restrict
unused or unnecessary physical and logical ports/protocols/services on
information systems.

Applications are capable of providing a wide variety of functions and
services. Some of the functions and services provided by default may not
be necessary to support essential organizational operations. Additionally,
it is sometimes convenient to provide multiple services from a single
component (e.g., email and web services); however, doing so increases
risk over limiting the services provided by any one component.
. . .

Joe Conway PGCon 2018 39/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - Check

As the database administrator, run the following SQL:

$ psql -c "SHOW port"

If the currently defined port configuration is deemed prohibited, this is a
finding.

Joe Conway PGCon 2018 40/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - Fix

Note: The following instructions use the PGDATA environment variable.
See supplementary content APPENDIX-F for instructions on configuring
PGDATA.

To change the listening port of the database, as the database
administrator, change the following setting in postgresql.conf:

$ sudo su - postgres

$ vi $PGDATA/postgresql.conf

Change the port parameter to the desired port.

Next, restart the database:

SYSTEMD SERVER ONLY

$ systemctl restart postgresql-9.5

INITD SERVER ONLY

$ service postgresql-9.5 restart

Joe Conway PGCon 2018 41/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - Fix

Note: psql uses the default port 5432 by default. This can be changed
by specifying the port with psql or by setting the PGPORT environment
variable:

$ psql -p 5432 -c "SHOW work_mem"

$ export PGPORT=5432

Joe Conway PGCon 2018 42/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

Example STIG Rule - References

CCI: CCI-000382
The organization configures the information system to prohibit or
restrict the use of organization defined functions, ports, protocols,
and/or services.
NIST SP 800-53 :: CM-7
NIST SP 800-53A :: CM-7.1 (iii)
NIST SP 800-53 Revision 4 :: CM-7 b

CCI: CCI-001762
The organization disables organization-defined functions, ports,
protocols, and services within the information system deemed to be
unnecessary and/or nonsecure.
NIST SP 800-53 Revision 4 :: CM-7 (1) (b)

Joe Conway PGCon 2018 43/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Related Configs

shared_preload_libraries = 'pgaudit'

pgaudit.log = 'all, -misc'

pgaudit.log_catalog = on

pgaudit.log_level = 'log'

pgaudit.log_parameter = on

pgaudit.log_relation = on

pgaudit.log_statement_once = off

pgaudit.role = 'auditor'

log_connections = on

log_disconnections = on

log_error_verbosity = default

log_line_prefix = '%m %a %u %d %r %p %s %c %e: '

log_file_mode = 0600

Joe Conway PGCon 2018 44/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Related Configs

log_destination = 'syslog'

syslog_facility = 'LOCAL0'

syslog_ident = 'postgres'

client_min_messages = error

log_timezone = 'UTC'

password_encryption = on

ssl = on

ssl_ca_file = '/some/protected/directory/root.crt'

ssl_crl_file = '/some/protected/directory/root.crl'

ssl_cert_file = '/some/protected/directory/server.crt'

ssl_key_file = '/some/protected/directory/server.key'

Joe Conway PGCon 2018 45/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Related Configs

Set these parameters to organizational requirements:

port = 5432

max_connections = N

statement_timeout = X

tcp_keepalives_idle = Y

tcp_keepalives_interval = Z

tcp_keepalives_count = Q

Joe Conway PGCon 2018 46/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Related HBA settings

An auth-method of ”password” is explicitly
forbidden

Although auth-method ”md5” not explicitly
banned, FIPS 140-2 compliance blocks it

Use auth-method of cert, gss, sspi, or ldap unless
justified and approved

PostgreSQL 10+ use SCRAM

Every role must have unique authentication
requirements

LOGIN roles must not be shared

Joe Conway PGCon 2018 47/69

Security Overview
CIS and STIG

Appendix

Overview
Example Rule Detail
Settings

STIG - Related HBA settings

With auth-method cert:

hostssl entries must contain clientcert=1
User mapping must be used as appropriate
CRL file must exist and be used

pg_hba.conf example rule

hostssl all bob samenet cert clientcert=1 map=ssl-test

example client command

psql "postgresql://<HOSTNAME>:<PORT>/postgres?sslmode=verify-full" -U bob

Joe Conway PGCon 2018 48/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Questions?

Thank You!
mail@joeconway.com

Joe Conway PGCon 2018 49/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

set user - Concept

GRANT EXECUTE on set_user() and/or set_user_u() to otherwise
unprivileged users

Can switch the effective user when needed to perform specific actions

Optional enhanced logging ensures an audit trail

Once one or more unprivileged users able to run set_user_u(), ALTER
superuser to NOLOGIN

Multiplex unprivileged users, e.g. with connection pools

Joe Conway PGCon 2018 50/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

set user - Overview

When an allowed user executes set_user('rolename') or
set_user_u('rolename'), several actions occur:

Current effective user becomes rolename
Role transition is logged, with specific notation if rolename is a superuser
Optionally ALTER SYSTEM commands will be blocked
Optionally COPY PROGRAM commands will be blocked
Optionally SET log_statement and variations will be blocked
If set_user.block_log_statement = on and rolename is a database superuser,
current log_statement setting is changed to ”all”, meaning every SQL statement
executed

Joe Conway PGCon 2018 51/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

set user - Overview

reset_user() function executed to restore the original user

At that point, these actions occur:

Role transition is logged
log_statement setting is set to its original value
Blocked command behaviors return to normal

Joe Conway PGCon 2018 52/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

set user - Superuser Escalation

EXECUTE permission on set_user_u('rolename') required

set_user.superuser_whitelist provides additional filter

If set_user.superuser_whitelist = '', escalation is blocked

If set_user.superuser_whitelist = '*', escalation is unfiltered

Default is set_user.superuser_whitelist = '*'

Combination of DAC (GRANT EXECUTE . . .) and configuration
(set_user.superuser_whitelist) allows two person control

Joe Conway PGCon 2018 53/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

set user - Unprivileged Multiplexing

EXECUTE permission on set_user('rolename') or
set_user('rolename','token') required

set_user('rolename','token'): token stored in session lifetime memory

reset_user('token') must be called instead of reset_user()
Provided token is compared with the stored token
If tokens do not match, or if a token was provided to set_user but not
reset_user, ERROR occurs.

Joe Conway PGCon 2018 54/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

pgaudit

Repository: https://github.com/pgaudit/pgaudit

Provides detailed session and/or object audit logging

Uses standard PostgreSQL logging facility

Goal is to produce audit logs required for compliance

Supports session and object level logging

Joe Conway PGCon 2018 55/69

https://github.com/pgaudit/pgaudit

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Session Logging

read: SELECT and COPY when the source is a relation or a query

write: INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the
destination is a relation

function: Function calls and DO blocks

role: Statements related to roles and privileges: GRANT, REVOKE,
CREATE/ALTER/DROP ROLE

ddl: All DDL that is not included in the ROLE class

misc: Miscellaneous commands, e.g. DISCARD, FETCH, CHECKPOINT,
VACUUM

all: All statements

Joe Conway PGCon 2018 56/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Session Logging

-- Example:

-- Enable session logging for all DML and DDL

set pgaudit.log = 'write, ddl';

-- Enable session logging for all commands except MISC

set pgaudit.log = 'all, -misc';

Joe Conway PGCon 2018 57/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Object Logging

Logs statements affecting particular relation

Only SELECT, INSERT, UPDATE and DELETE commands are supported

Intended to be a finer-grained replacement for pgaudit.log = 'read, write'

Implemented via the roles system (pgaudit.role setting)

Relation (TABLE, VIEW, etc.) audit logged when audit role has (or inherits)
permissions for the executed command

Joe Conway PGCon 2018 58/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Object Logging

-- Example:

-- Set pgaudit.role to auditor and grant SELECT and DELETE privileges

-- on the account table. Any SELECT or DELETE statements on the account

-- table will now be logged:

set pgaudit.role = 'auditor';

grant select, delete

on public.account

to auditor;

Joe Conway PGCon 2018 59/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

Installation and Settings

See U PostgreSQL 9-x V1R1 Supplemental.pdf

Section 2.2. Appendix B for installation and configuration

STIG configuration:

shared_preload_libraries = 'pgaudit'

pgaudit.log = 'all, -misc'

pgaudit.log_catalog = on

pgaudit.log_level = 'log'

pgaudit.log_parameter = on

pgaudit.log_relation = on

pgaudit.log_statement_once = off

pgaudit.role = 'auditor'

Joe Conway PGCon 2018 60/69

http://iasecontent.disa.mil/stigs/zip/U_PostgreSQL_9-x_V1R1_STIG.zip

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

Possible alternative to ”history” tables

Use RLS to filter based on point in time

Use PG10 partitioning to keep history separate from current

Joe Conway PGCon 2018 61/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

CREATE TABLE timetravel

(

id int8,

f1 text not null,

tr tstzrange not null default tstzrange(clock_timestamp(), 'infinity', '[]')

) PARTITION BY RANGE (upper(tr));

CREATE TABLE timetravel_current PARTITION OF timetravel

(

primary key (id, tr) DEFERRABLE

) FOR VALUES FROM ('infinity') TO (MAXVALUE);

CREATE INDEX timetravel_current_tr_idx ON timetravel_current USING GIST (tr);

CREATE TABLE timetravel_history PARTITION OF timetravel

(

primary key (id, tr) DEFERRABLE

) FOR VALUES FROM (MINVALUE) TO ('infinity');

CREATE INDEX timetravel_history_tr_idx ON timetravel_history USING GIST (tr);

Joe Conway PGCon 2018 62/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

CREATE OR REPLACE FUNCTION get_pit() RETURNS timestamptz AS $$

SELECT

CASE WHEN current_setting('tt.cts', true) IS NULL OR

current_setting('tt.cts', true) = '' THEN

clock_timestamp()

ELSE

current_setting('tt.cts', true)::timestamptz

END

$$ LANGUAGE sql;

-- only current rows are visible

-- unless tt.cts is defined, in which case get rows current as of that time

ALTER TABLE timetravel ENABLE ROW LEVEL SECURITY;

CREATE POLICY p1 ON timetravel

USING (tr @> get_pit())

WITH CHECK (/* NEW */tr @> clock_timestamp() OR

/* OLD */ upper(tr) <= clock_timestamp());

Joe Conway PGCon 2018 63/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

CREATE OR REPLACE FUNCTION modify_timetravel()

RETURNS TRIGGER AS $$

DECLARE

ctr timestamptz := clock_timestamp();

BEGIN

OLD.tr = tstzrange(lower(OLD.tr), ctr, '[)');

INSERT INTO timetravel VALUES (OLD.*);

IF (TG_OP = 'UPDATE') THEN

NEW.tr = tstzrange(ctr, 'infinity', '[]');

RETURN NEW;

ELSIF (TG_OP = 'DELETE') THEN

RETURN OLD;

END IF;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER timetravel_audit BEFORE DELETE OR UPDATE

ON timetravel_current FOR EACH ROW EXECUTE PROCEDURE modify_timetravel();

Joe Conway PGCon 2018 64/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

GRANT ALL ON timetravel TO dba;

SET SESSION AUTHORIZATION dba;

INSERT INTO timetravel(id, f1)

SELECT g.i, 'row-' || g.i::text

FROM generate_series(1,1000000) AS g(i);

RESET SESSION AUTHORIZATION;

VACUUM FREEZE ANALYZE timetravel;

SET SESSION AUTHORIZATION dba;

Joe Conway PGCon 2018 65/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

-- NOTE: Point In Time (pit) is after update to id 42 and before delete of id 4242

UPDATE timetravel SET f1 = 'update number 1' WHERE id = 42 RETURNING lower(tr) AS pit \gset

DELETE FROM timetravel WHERE id = 4242;

SELECT * FROM timetravel WHERE id in (42, 4242);

id | f1 | tr

----+-----------------+--

42 | update number 1 | ["2017-09-03 16:44:22.160023-07",infinity]

Joe Conway PGCon 2018 66/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

UPDATE timetravel SET f1 = 'update number 2' WHERE id = 42;

SELECT * FROM timetravel WHERE id = 42;

id | f1 | tr

----+-----------------+--

42 | update number 2 | ["2017-09-03 16:44:24.206489-07",infinity]

UPDATE timetravel SET f1 = 'update number 3' WHERE id = 42;

SELECT * FROM timetravel WHERE id = 42;

id | f1 | tr

----+-----------------+--

42 | update number 3 | ["2017-09-03 16:44:25.270849-07",infinity]

Joe Conway PGCon 2018 67/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

SELECT set_config('tt.cts', :'pit', false);

set_config

2017-09-03 16:44:22.160023-07

SELECT * FROM timetravel WHERE id in (42, 4242) ORDER BY 1, 3;

id | f1 | tr

------+-----------------+---

42 | update number 1 | ["2017-09-03 16:44:22.160023-07","2017-09-03 16:44:24.206489-07")

4242 | row-4242 | ["2017-09-03 16:44:04.406047-07","2017-09-03 16:44:23.173052-07")

Joe Conway PGCon 2018 68/69

Security Overview
CIS and STIG

Appendix

set user
pgaudit
RLS Timetravel

RLS Timetravel

RESET SESSION AUTHORIZATION;

SELECT * FROM timetravel WHERE id in (42, 4242) ORDER BY 1, 3;

id | f1 | tr

------+-----------------+---

42 | row-42 | ["2017-09-03 16:44:04.34601-07","2017-09-03 16:44:22.160023-07")

42 | update number 1 | ["2017-09-03 16:44:22.160023-07","2017-09-03 16:44:24.206489-07")

42 | update number 2 | ["2017-09-03 16:44:24.206489-07","2017-09-03 16:44:25.270849-07")

42 | update number 3 | ["2017-09-03 16:44:25.270849-07",infinity]

4242 | row-4242 | ["2017-09-03 16:44:04.406047-07","2017-09-03 16:44:23.173052-07")

Joe Conway PGCon 2018 69/69

	Security Overview
	Perimeter
	Internal
	Chronological

	CIS and STIG
	Overview
	Example Rule Detail
	Settings

	Appendix
	set_user
	pgaudit
	RLS Timetravel

