
May 24, 2007

Improving Your View
The Upcoming Role of PostgreSQL in

Flat Panel Display Production

Joe Conway

2 May 24, 2007

Agenda
● Introduction

● Case Study
● Players

● Flat Panel Display (FPD) Overview
● Market
● Process

● Control System Architecture
● Hardware
● Software

● PostgreSQL’s Roles
● What
● How

3

Introduction

● Case Study
● Complex Equipment
● Software Controlled
● PostgreSQL at the core

4

• Joint Venture of Cymer & Carl Zeiss SMT Founded
July, 2005

• Corporate Headquarters: San Diego, CA
• Manufacturing Facilities:

• San Diego, Calif. – Light Source Manufacturing
• Oberkochen, Germany – Stage System and Optics

Manufacturing
• Demonstration Facility and Integration Center:

• Pyongtaek Korea

Cymer Manufacturing
Facility

 San Diego, Calif.

Demonstration Facility and
Integration Center
Pyongtaek, Korea

Zeiss Manufacturing Facility
Oberkochen, Germany

TCZ Overview

5

Cymer Overview

Cymer is the world’s largest supplier of excimer light
sources enabling deep-ultraviolet (DUV)
photolithography

• 2006 Revenues: $543.9 Million
• About 975 Employees worldwide
• Founded in 1986
• Major Customers Include:

– Canon, Nikon, ASML
– The world’s top chip-makers

• Over 3000 laser light sources installed

6

• 2005 Revenues: €656 Million
• > 1,900 employees worldwide
• Founded in 2001
• Currently four divisions:

– Lithography Optics
– Laser Optics
– Semiconductor Metrology System
– Nano Technology Systems

• Major Customers Include:
– ASML, Cymer

Zeiss SMT AG is representing one out of six
business units from Carl Zeiss AG, a global leader
in the optical and opto-electronic industries.

Carl Zeiss SMT AG Overview

7

Why Do We Care?

Source: DisplaySearch June 05

8

Trend 1 – Reduce Size of TFT
● Brighter displays for digital cameras, mobile

applications
● Higher resolution for phones, portable DVD

players
● Faster response to reduce “blurring” that can

occur with LCD displays.

9

Trend 2 – Replace external IC’s
with “System-on-Glass”

SOG Panel
Typical cell

phone display

Integrated Drive
ElectronicsExternal

IC’s

10

Trend 3 – Transition to OLED

● Active emitters replace liquid crystal + color filter + back light to
give improved performance, lower cost

● Volume production of OLED displays still requires further
improvements:

● OLED material lifetimes need to be extended.
● TFT’s need to be redesigned to support higher current loads.
● OLED yields still much lower than LCD.

Samsung Electronics

11

Two Types of Silicon Transistors

Amorphous Silicon

• Used for majority of
displays today.

• Well suited for LCD TV.

• Higher power
requirement than p-Si.

• Not able to support high
speed needed for SOG.

• Challenged to support
OLED TV due to material
degradation under high
currents.

Polycrystalline Silicon

• Increasing use for small &
medium displays.

• Smaller, faster TFTs.

• Supports trend towards
System-on-Glass.

• Poly-Si TFT’s very stable
under high current load
needed by OLED

• Yield of poly-Si process has
been lower than a-Si due to
limitations in Crystallization
process step

 vs.

12

Laser Crystallization

ELA SLS TDX

mobility ~ 75 cm2/Vs mobility ~ 150 cm2/Vs mobility ~ 300 cm2/Vs

● Excimer laser annealing is the most common
technique for making poly-Si

● XeCl or XeF laser used to melt local region of a-Si.
● Silicon crystals are formed during cooling.
● Challenge is to create large crystals to produce high

electron mobility.

13

Crystallization Process

 A thin beam is used to
achieve “Lateral Growth”
with growth initiated from
seeds at liquid-solid
interface

 Beam is long enough to
expose glass in single pass

 Beam Properties: 730 mm x
5 micron.

Glass

a-Si

5 to10 µm

Seed

thin laser
beam

5 micron

14 May 24, 2007

The Hardware

15 May 24, 2007

Master Control Cabinet (MCC) Overview

3 U D isk A rray

1 U T ape

1 U S w itch

1 U

1 U

4 U M S C

4 U D A S

6 U M D M

1 U F S E

1 U Lan tro n ix

1 U

1 U

1 U

1 U

1 U

3 U
C over

1 U F an
1 U

F irew a ll

41 U
● Dual Opteron server with

8GB RAM running CentOS
for control (MSC)

● Dual Opteron server with
8GB RAM running CentOS
for data acquisition (DAS)

● One dual P4 server running
Windows Server 2003 for
diagnostic utilities

● 3.5 TB Storage Array
● Cisco Switch and PIX

Firewall
● 16 Port Lantronix for serial to

TCP/IP conversion
MSC – Master System Controller server
MDM – Master Distribution Module
DAS – Data Acquisition Service server
FSE – Field Service Engineer server

16 May 24, 2007

Hardware Devices
● MSC and/or DAS communicate with:

● 1200 W, 6 kHz Xenon Fluoride DUV Laser
● Beam Delivery Unit with Active Beam Steering

and Stabilization
● Active Illuminator Auto Focus Control
● Precision Motion Control (stage)
● Projection Optics Module (POM) with Motor

Control and Metrology Sensors (temperature,
O2, beam energy, beam profile)

● Electrical and Fluid Utilities
● Unknown (in advance) Material Handler
● Unknown (in advance) Factory Automation

Host

17 May 24, 2007

Software Design Objectives

● High Availability
● Run reliably in production environment 7 x 24 x 365.

● Distributed
● Hard real-time requirements handled by the devices.
● Overall coordination, control, operator feedback, and

data collection handled by MSC.
● Allow for multiple paths of information flow (e.g. local

operator control and factory host).
● Adaptable

● Capable of controlling and monitoring an arbitrary set of
intelligent devices.

● Allow new device types to be added, or modification of
existing devices, without entire rewrite/recompile.

18 May 24, 2007

Implementation Methods

● Device commands are stored and loaded dynamically. They
are not hard-wired in the code. They are be cached for
performance reasons as required.

● The number of parameters for any task or system level
device configuration is not fixed by the GUI design.
Additional parameters added to a task do not involve
coding modifications to the user interface screens.

● TCP/IP is the main type of communication to the devices.
When required, use the Lantronix to convert serial
communication protocols.

● The system does not block when waiting to get response
from devices for timing critical commands. They are
executed asynchronously

19 May 24, 2007

Implementation Methods

● Bulk of the software is C++. The GUI is written in Java.
Control and data collection “Tasks” are stored in
parameterized script form, similar to PostgreSQL
procedural language functions. Tasks may access devices
via Command Library calls.

● Work is done on the system by running Projects or
Recipes. Projects are created by the operator using the
provided Tasks. A Recipe is a special Task.

● At runtime, the Command Interpreter is used to parse
Tasks, thereby executing device commands. Control logic
is thus moved from compiled code to dynamic data.

20 May 24, 2007

MSC Software Architecture

ECP BSP

DMP

GUI DAS

DP Devices

SECS/GEM

MSCDB

Factory Automation Host

Tool Operator
DASDB

21 May 24, 2007

MSC Software Architecture

Job
Mgmt

Cmd
Interp

Cmd
Lib

Device
Control
Comms

Device
Driver
Interface

Device
Driver

Device
Driver

Device
Driver

DP

Device1

Device4

Device2

Device3

Status
Mgmt

Device
Status
Comms

Device
Driver
Interface

Device
Driver

Device
Driver

Device
Driver

DMPMSCDBDASDB

22 May 24, 2007

Task Execution

OEM
Schema

MSC
Schema

Task Parameters

Interpreter

23 May 24, 2007

● Laser Serial Connection
● Device Driver – about 100 lines C++
● Device Class – about 500 lines Python
● Device Configuration – about 100 lines SQL

Device Support Example

24 May 24, 2007

● What
● Configuration

● User Controlled
● OEM Controlled

● Data
● Status
● Streaming
● Logging

● How
● General
● Device Abstraction
● Data

● Status
● Streaming

Role of PostgreSQL

25 May 24, 2007

● User Controlled
● System configuration – global level variables that

allow operator control of system behaviors. Examples:
● Connection timeouts
● Calibration factors
● Device enable/disable

● Defined users
● Project and recipe

● Project level parameters
● Included Tasks and associated parameters
● Permissions

● Chart Templates

Role of PostgreSQL - Configuration

26 May 24, 2007

● OEM Controlled
● Bootstrap user configuration
● GUI “Look and Feel”: color, tabs, labels
● Job execution: encrypted Task and Class scripts
● Internal Setup

● Routing Tables for DMP
● Message Mapping

● Device Setup and Adaptability
● Configuration: “Gold” lists
● NLF-2-DF translation
● Device list – table of device driver shared objects to

load dynamically

Role of PostgreSQL - Configuration

27 May 24, 2007

● Status loop data
● Continuous polling loop, throttled to specific, relatively

slow, data rate.
● Separate thread per device, synchronized in time by

“sync thread”.
● Hundreds of attributes, flexibility required. Stored in

PostgreSQL using Attribute-Value form.
● Buffered and bulk copied. Partitioned by time/device.
● Used with built in charting and reporting features to

monitor system health
● Examples:

● Laser energies at various points in the system
● Beam profiles near the exposed substrate
● Stage and metrology positions
● Temperatures throughout the system

Role of PostgreSQL - Data

28 May 24, 2007

● Streamed data
● High data rate, up to 6 kHz
● Many attributes

● Laser stream ~ 24 fields
● Metrology stream ~ 70 fields

● Stored in PostgreSQL using Normalized form
● Buffered and bulk copied. Partitioned by time/device.
● Used with built in charting and reporting features to

monitor system health
● Examples:

● Laser energies and related properties
● Beam profile measurements

Role of PostgreSQL - Data

29 May 24, 2007

● System logging
● All MSC components log to a central logger daemon
● Many system Devices also log directly to the same

logger
● Logger daemon

● buffers
● writes to PostgreSQL database
● sends messages in parallel to GUI via DMP

● GUI allows
● filtering of live log by device, severity
● report generation by date/time, device, severity

Role of PostgreSQL - Data

30 May 24, 2007

● Schema: OEM schema is used for bootstrapping and MSC
schema to overlay user settings. Application defaults to
OEM schema settings in the absence of MSC schema
settings.

● Partitioning: Extensive use of partitioning by timestamp
and device for status and streaming data. Allows
simplified and quick enforcement of data retention
policies.

● dblink: The DAS and MSC servers are separated in order
to ensure data collection and control do not interfere with
each other. Occasionally data captured by the DAS is
needed on the MSC.

● Extensive use of functions. E.g. custom C extension
functions for XML and HMAC

● XML messages used in DMP and with GUI4J
● HMAC used for Project/Recipe locking

General Techniques

31 May 24, 2007

● Neutral Language Format to Device Format
(NLF-to-DF) conversion
● Entity-Attribute-Value form
● Provides mapping from generic command

used by Task script to device specific
command

● Allows replacement of device with another
having same function but different
commands and responses

● Examples:
● Material handling robot
● Newer model laser

Device Abstraction – NLF-to-DF

32 May 24, 2007

Device Abstraction – NLF-to-DF

In PostgreSQL:

create table oem_device_command
(

device_id int not null,
nlf_command_name text not null,
df_command_name text not null,
nlf_data_conversion text,
df_data_conversion text

);

copy oem_device_command from stdin;
1 GET_DIAGNOSTIC_DATA DI%? INTC HEX4

33 May 24, 2007

Device Abstraction – NLF-to-DF

In Python, Laser Class:

self.LaserInternalEnergyAvg=107

def Diag(self,Value):
 return int(self.Device('GET_DIAGNOSTIC_DATA',Value))

In Python, Task Script:

IntEng=[]
while time.time() < endCaptureTime:
 IntEng.append(laser.Diag(laser.LaserInternalEnergyAvg))

34 May 24, 2007

● Device Variables
● A few attributes are common to all devices, but many

are unique per device
● Allows replacement of a device with another having

the same function but different default behaviors
● Simplifies addition of new devices

Device Abstraction – Device Variables

35 May 24, 2007

Device Abstraction – Device Variables

In PostgreSQL:

create table oem_device_variable
(

device_id int not null,
variable_name text not null,
variable_label text,
variable_uom text,
variable_data_type text not null,
variable_type text not null,
variable_default text,
variable_required char(1) not null,
variable_validator text,
variable_order int,
variable_list text,
variable_internal int,
variable_public int not null

);

36 May 24, 2007

Device Abstraction – Device Variables

In PostgreSQL – example device, simplified:

v a r i a b l e _ l a b e lv a r i a b l e _ d a t a _ t y p ev a r i a b l e _ t y p ev a r i a b l e _ d e f a u l tv a r i a b l e _ v a l i d a t o rv a r i a b l e _ l i s t
D e v i c e E n a b l e d T E X T S E L E C T I O N F A L S E I S _ A L P H AT R U E ; F A L S E
S e n d F u l l S t a t u s t o G U I T E X T S E L E C T I O N T R U E I S _ A L P H AT R U E ; F A L S E
D e v i c e C o n n e c t i o n A t t e m p t s I N T I N P U T 3 I N S T A N T C H E C K : [. . .]
D e v i c e C o n n e c t i o n T i m e o u t T E X T I N P U T 5 I S _ A L P H A N U M
C o m m a n d P l a c e h o l d e r T E X T I N P U T % I S _ A L P H A N U M
R e a d T e r m i n a t o r T E X T I N P U T & # 1 3 ; I S _ A L P H A N U M
D e v i c e L i b r a r y T E X T I N P U Tl i b m s c o m e g a b u s . s oI S _ A L P H A N U M
L o g L e v e l T E X T I N P U T 0 I S _ A L P H A N U M
I P A d d r e s s T E X T I N P U T i c e 9 l a n t r o n i x I S _ A L P H A N U M
P o r t N u m b e r T E X T I N P U T 3 0 0 4 I S _ A L P H A N U M
S e r v i c e M o d e S u p p o r t e d T E X T S E L E C T I O N N o I S _ A L P H A N o ; Y e s

37 May 24, 2007

● Attribute-Value form
● List must be flexible
● Thousands of available attributes; hundreds deemed

interesting
● Data rate is relatively slow

● Partitioned
● by device
● by timestamp

● Joined across devices by synchronizing thread
timestamps

● Each device has own collection thread, but
synchronizing thread used to allow cross-correlation of
data

Data – Status

38 May 24, 2007

In PostgreSQL:

create table das_status_log
(

device_id bigint,
status_timestamp timestamp with time zone,
status_name text,
status_value text,
status_uom text

);

create table das_status_log_[year]_[month]_[week]_[device]
(

CHECK
(

device_id = [device_id] and
status_timestamp >= [startdate] and
status_timestamp < [enddate]

)
) inherits (das_status_log);

Data – Status

39 May 24, 2007

In PostgreSQL:

select status_timestamp,
 status_name,
 status_value
from das_status_log_2007_05_1_7;

 status_timestamp | status_name | status_value
-------------------------------+----------------+-------------
 2007-05-01 00:00:00.055783+02 | Stage_CX | 99.9961
 2007-05-01 00:00:00.055783+02 | Stage_CY | 5.0022
 2007-05-01 00:00:00.055783+02 | Stage_CZ | 0.0006
 2007-05-01 00:00:00.055783+02 | real_timestamp | 2007-Apr-30
 23:59:59.839861
 +0200

Data – Status

40 May 24, 2007

Data – Status

41 May 24, 2007

● Normalized form
● Relatively fixed set of attributes
● High data rate

● Partitioned
● by device
● by timestamp

● Joined across devices by synchronizing shot-
count

● data is streamed at rate of one record per laser shot
● streamed data shot record tagged with unique shot-

count number
● data across devices correlated on synchronizing shot-

count number

Data – Streaming

42 May 24, 2007

“Insist on Cymer”

Questions?

